Kinetochores Generate Microtubules with Distal Plus Ends: Their Roles and Limited Lifetime in Mitosis
نویسندگان
چکیده
In early mitosis, microtubules can be generated at kinetochores as well as at spindle poles. However, the role and regulation of kinetochore-derived microtubules have been unclear. In general, metaphase spindle microtubules are oriented such that their plus ends bind to kinetochores. However, we now have evidence that, during early mitosis in budding yeast, microtubules are generated at kinetochores with distal plus ends. These kinetochore-derived microtubules interact along their length with microtubules that extend from a spindle pole, facilitating kinetochore loading onto the lateral surface of spindle pole microtubules. Once kinetochores are loaded, microtubules are no longer generated at kinetochores, and those that remain disappear rapidly and do not contribute to the metaphase spindle. Stu2 (the ortholog of vertebrate XMAP215/ch-TOG) localizes to kinetochores and plays a central role in regulating kinetochore-derived microtubules. Our work provides insight into microtubule generation at kinetochores and the mechanisms that facilitate initial kinetochore interaction with spindle pole microtubules.
منابع مشابه
Kebab: Kinetochore and EB1 Associated Basic Protein That Dynamically Changes Its Localisation during Drosophila Mitosis
Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report th...
متن کاملConnecting with Ska, a key complex at the kinetochore–microtubule interface
The highly orchestrated movements of chromosomes during mitosis depend on the formation of stable connections between microtubules and kinetochores. How kinetochores generate these linkages to harness the forces produced by dynamic microtubule plus-ends remains unknown. Three recent studies make significant progress on this front, by identifying a third component of the kinetochore-associated S...
متن کاملDistinct mechanisms govern the localisation of Drosophila CLIP-190 to unattached kinetochores and microtubule plus-ends.
CLIP-170 was the first microtubule plus-end-tracking protein to be described, and is implicated in the regulation of microtubule plus-ends and their interaction with other cellular structures. Here, we have studied the cell-cycle-dependent mechanisms which localise the sole Drosophila melanogaster homologue CLIP-190. During mitosis, CLIP-190 localises to unattached kinetochores independently of...
متن کاملForce on spindle microtubule minus ends moves chromosomes
The spindle is a dynamic self-assembling machine that coordinates mitosis. The spindle's function depends on its ability to organize microtubules into poles and maintain pole structure despite mechanical challenges and component turnover. Although we know that dynein and NuMA mediate pole formation, our understanding of the forces dynamically maintaining poles is limited: we do not know where a...
متن کاملThe KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK
Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that alter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2010